Y ‘ Java Client for Player/Stage

"Experience the power of Java"

S—
k J AVA Maxim A. Batalin (maxim@robotics.usc.edu)

How to...

This brief paper would introduce basic concepts of construction programs using
Java Client. Note that Java Client is a client and therefore, the major concepts are the
same as those of Player/Stage. Thus, the major assumption is that the reader introduced
himself with concepts that are provided in Player/Stage manuals. In general, Java Client
is similar to the C++ client with respect to general architecture. Hence, the major
construction steps are:

1: Connect to robot by constructing a Playerdient
obj ect

2: Create devices that are to be used in the
program by requesting them fromthe Playerdient
obj ect.
whi | e(soneCondi ti onToFi ni shl sNot True) {

Read the data from devi ces

Based on recei ved data determ ne actions

Sahw

}

Therefore, the lines 4-5 would be repeated until a certain condition was met:
mission accomplished or loop forever are possible values. For better understanding of
presented concepts consider a simple program:

1: import Javaclient.src.*;
2: public class CircleVval k {
3: public static void main(String[] args) {
4: Pl ayerClient pc = new Playerdient("local host", 6665);
5: Posi ti onPl ayer Devi ce ppd = pc.requestPosition('a');
6: while (true) {
7: pc.readAl |l ();
8: ppd. set Speed(100, 30);
9: }
10: }
11: }

At line 1 the Java Client library is being imported. At line 4 the PlayerClient
object is being created. The two parameters that are needed to connect to the robot are
the ServerName ("localhost" means connect to machine that executes the program) and
PortOfConnection (6665 — port number for the connection). Line 5 creates a device —
PositionPlayerDevice, which is being created by corresponding request to PlayerClient

object. The only argument of the request() method is character describing device access
codes (refer to Player/Stage 1.2 manual p. 20, table 5.2). Lines 6-9 describe a "life cycle"
of the program. At line 7 a readAll() method is being called, which reads data for every
created device. Thus, after line 7 user can access new data returned from the server. Line
8 contains command issued to the PositionPlayerDevice — setSpeed(translationalSpeed,
turnrate), which constantly advances robot in circular orbit.

1. The PlayerClass class

1.1 Constructor
public PlayerCient(String serverName, int portNunber);
Where serverName is the URL of the server on which the program should be run

("localhost" means connect to machine that executes the program) and portNumber is the
port number of the connection.

1.2 Methods

Request device access - Player/Stage 1.2 manual (further abbreviated as PS) p.20

public M scPl ayer Devi ce request M sc(char r);

public GipperPl ayerDevi ce request Gi pper(char r;
public PositionPl ayerDevice requestPosition(char r);
publ i c Sonar Pl ayer Devi ce request Sonar (char r);
public LaserPl ayer Devi ce request Laser(char r);
publ i c VisionPl ayer Devi ce request Vi sion(char r);
public PtzPl ayerDevice requestPtz(char r);

publ i ¢ Audi oPl ayer Devi ce request Audi o(char r);
publ i ¢ BeaconPl ayer Devi ce request Beacon(char r);
publ i ¢ Broadcast Pl ayer Devi ce request Broadcast (char r);
publ i c SpeechPl ayer Devi ce request Speech(char r);
public GPSPI ayer Devi ce request GPS(char r);

public TruthPl ayerDevi ce request Truth(char r);
publ i c BPSPI ayer Devi ce request BPS(char r);

Change data mode — PS (p. 20)
public void request Dat aMbde(byt e node);
Request one round of data — PS (p. 21)

public void request OneRoundDat a() ;

Change data frequency — PS (p.21)
public void request Dat aFr equency(short frequency);
Authentication — PS (p.21)

public void request Aut henti cation(byte[] key);

Devices

2. The MiscPlayerDevice class

2.1 Methods

Method allowing to read the data manually, if readA!ll() of PlayerClient has not
been called.

public void readData();
Methods return exactly the same variable as in PS (p. 22)

publ i c byte get Front Bunpers();
publ i ¢ byte get ReadBunpers();
public byte getBattery();

publ i c byte get Anal ogl nput () ;
public byte getDigitallnput();

3. The GripperPlayerDevice class

3.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not
been called.

public void readData();
Commands - PS (p. 23)

public void setGipper(byte cnd, byte arg);

Methods — PS (p.23)

public byte
public byte

getState();
get Beans() ;

4. The PositionPlayerDevice class

4.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not

been called.

public void

readDat a() ;

Commands - PS (p. 24 - 25)

public void
public void
public void
public void
public void
Methods — PS (p.
public int

public int

public short
public short
public short
public short
public byte

set Speed(i nt speed, int turnrate);
set Speed(i nt speed, int turnrate,

i nt sideSpeed);
setMotorState(int state);
set SpeedMbde(byt e node);
reset();

24)

get X() return x; }

get Y() return vy;

get Headi ng() return heading; }
get Speed() return speed; }

get Turnrate()
get Conpass()
stall ()

return turnrate; }
return conpass; }
return stalls; }

Lt Ve Vo Vo Vaan Yoo Voo Y

5. The SonarPlayerDevice class

5.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not

been called.

public void

readDat a() ;

Commands - PS (p. 26)

public void set Sonar Power (byte state);

Accessible variables — PS (p.26)

public int range[];
public int sanpl esCount;

6. The LaserPlayerDevice class

6.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not
been called.

public void readData();

Commands - PS (p. 27-28)

public void configureLaser(short startAngle,
short endAngl e,
short resol ution,
byte intensity);
public void getConfiguration();

If the configuration of the laser changed, the following method would return true,
otherwise — false;

public bool ean i sNewinfo ();

Methods — PS (p.27-28)

public int[] getRange();

public int[] getReflection();
public short getStartAngle();
public short get EndAngl e();
public int get Resol ution();
public int get Sanpl esCount () ;
public short getlintensity();

7. The VisionPlayerDevice class

7.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not
been called.

public void readData();

Methods — PS (p.27-28)

publ i ¢ Col or Channel [] get Col or Channel s() ;
publ i ¢ Col or Channel get Col or Channel (int i);

ColorChannel class variables:

public short i ndex;
public short noBl obs;
publ i c Col orBl ob[] bl ob;

ColorBlob class variables as in PS (p. 29):

public int col or;
public int ar ea;
public short x;
public short vy;
public short left;
public short right;
public short top;
public short bottom

8. The PtzPlayerDevice class

8.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not
been called.

public void readData();

Commands — PS (p. 30)

public void set PTZ(short pan, short tilt, int zoom

Methods — PS (p.30)
public short getPa

. an()
public short getTilt(
0

)
public int get Zoom() ;

9. The AudioPlayerDevice class

9.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not
been called.

public void readData();

Commands — PS (p. 31)

public void produceSound(short freq, short anp,
short duration);

Methods — PS (p.31)

nt[] getFiveH ghest Frequencies();
t[] getFiveH ghest Anplitudes();

10. The BeaconPlayerDevice class

10.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not
been called.

public void readData();

Commands — PS (p. 33)

public void setConfiguration(byte bitCount,
short bitWdth,
short zeroThresh,
short oneThresh);
public void getConfiguration();

If the configuration of the laser changed, the following method would return true,
otherwise — false;

public bool ean i sNewinfo ();

Methods — PS (p.33)

public int get BeaconCount () ;
publ i ¢ Beacon[] getBeacons();
public byte get Bi t Count () ;
public short getBitWdth();
public short get ZeroThresh();
public short get OneThresh();

11. The BroadcastPlayerDevice class

11.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not
been called.

public void readData();

Commands — PS (p. 34-35)

public void sendMessage(String n;
public void recei veMessage();

Methods — PS (p.33)
public String getMessage();

To diversify between cases when the new message is received and the old
message still in the queue.

public void set Read() ;
publ i c bool ean i sRead();

12. The SpeechPlayerDevice class

12.1 Methods

Methods — PS (p.36)

public void say(String str);

13. The GPSPlayerDevice class

13.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not
been called.

public void readData();

Methods — PS (p.37)

public int getX();
public int getY();
public int getHeading();

14. The VisionPlayerDevice class

14.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not
been called.

public void readData();

Commands — PS (p. 38-39)

The variables of the posinfo array are the first 6 variables in table PS-5.26
public void setBeacon(int id, int[] poslnfo);

Methods — PS (p.38)

public int getPX();
public int getPY();
public int getPA();
public int getUX();
public int getUY();
public int getUA();

public int getReserved();

15. The TruthPlayerDevice class
Device available only in Stage (only in simulations and not on the real hardware).

15.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not
been called.

public void readData();
Commands
Teleports robot to a new location.

public void teleport(int x, int y);
public void teleport(int x, int y, int heading);

Methods — PS (p.38)

publ i ¢ bool ean isTel eported();
public int get X();

public int get Y();

public int get Headi ng() ;

	Devices

