

Java Client for Player/Stage

"Experience the power of Java"

Maxim A. Batalin (maxim@robotics.usc.edu)

How to…

 This brief paper would introduce basic concepts of construction programs using
Java Client. Note that Java Client is a client and therefore, the major concepts are the
same as those of Player/Stage. Thus, the major assumption is that the reader introduced
himself with concepts that are provided in Player/Stage manuals. In general, Java Client
is similar to the C++ client with respect to general architecture. Hence, the major
construction steps are:

1: Connect to robot by constructing a PlayerClient
object

2: Create devices that are to be used in the
program by requesting them from the PlayerClient
object.

3: while(someConditionToFinishIsNotTrue) {
4: Read the data from devices
5: Based on received data determine actions
6: }

 Therefore, the lines 4-5 would be repeated until a certain condition was met:
mission accomplished or loop forever are possible values. For better understanding of
presented concepts consider a simple program:

 1: import Javaclient.src.*;
 2: public class CircleWalk {

 3: public static void main(String[] args) {

 4: PlayerClient pc = new PlayerClient("localhost",6665);

 5: PositionPlayerDevice ppd = pc.requestPosition('a');

 6: while (true) {

 7: pc.readAll();

 8: ppd.setSpeed(100, 30);

 9: }

10: }

11: }

 At line 1 the Java Client library is being imported. At line 4 the PlayerClient
object is being created. The two parameters that are needed to connect to the robot are
the ServerName ("localhost" means connect to machine that executes the program) and
PortOfConnection (6665 – port number for the connection). Line 5 creates a device –
PositionPlayerDevice, which is being created by corresponding request to PlayerClient

object. The only argument of the request() method is character describing device access
codes (refer to Player/Stage 1.2 manual p. 20, table 5.2). Lines 6-9 describe a "life cycle"
of the program. At line 7 a readAll() method is being called, which reads data for every
created device. Thus, after line 7 user can access new data returned from the server. Line
8 contains command issued to the PositionPlayerDevice – setSpeed(translationalSpeed,
turnrate), which constantly advances robot in circular orbit.

1. The PlayerClass class

1.1 Constructor

 public PlayerClient(String serverName, int portNumber);

Where serverName is the URL of the server on which the program should be run

("localhost" means connect to machine that executes the program) and portNumber is the
port number of the connection.

1.2 Methods

Request device access - Player/Stage 1.2 manual (further abbreviated as PS) p.20

public MiscPlayerDevice requestMisc(char r);
public GripperPlayerDevice requestGripper(char r;
public PositionPlayerDevice requestPosition(char r);
public SonarPlayerDevice requestSonar(char r);
public LaserPlayerDevice requestLaser(char r);
public VisionPlayerDevice requestVision(char r);
public PtzPlayerDevice requestPtz(char r);
public AudioPlayerDevice requestAudio(char r);
public BeaconPlayerDevice requestBeacon(char r);
public BroadcastPlayerDevice requestBroadcast(char r);
public SpeechPlayerDevice requestSpeech(char r);
public GPSPlayerDevice requestGPS(char r);
public TruthPlayerDevice requestTruth(char r);
public BPSPlayerDevice requestBPS(char r);

Change data mode – PS (p. 20)

public void requestDataMode(byte mode);

Request one round of data – PS (p. 21)

public void requestOneRoundData();

Change data frequency – PS (p.21)

public void requestDataFrequency(short frequency);

Authentication – PS (p.21)

public void requestAuthentication(byte[] key);

Devices

2. The MiscPlayerDevice class

2.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not

been called.

public void readData();

Methods return exactly the same variable as in PS (p. 22)

public byte getFrontBumpers();
public byte getReadBumpers();
public byte getBattery();
public byte getAnalogInput();
public byte getDigitalInput();

3. The GripperPlayerDevice class

3.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not

been called.

public void readData();

Commands - PS (p. 23)

public void setGripper(byte cmd, byte arg);

 Methods – PS (p.23)

 public byte getState();

public byte getBeams();

4. The PositionPlayerDevice class

4.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not

been called.

public void readData();

Commands - PS (p. 24 - 25)

public void setSpeed(int speed, int turnrate);
public void setSpeed(int speed, int turnrate,

 int sideSpeed);
 public void setMotorState(int state);

public void setSpeedMode(byte mode);
public void reset();

 Methods – PS (p.24)

public int getX() { return x; }
public int getY() { return y; }
public short getHeading() { return heading; }
public short getSpeed() { return speed; }
public short getTurnrate() { return turnrate; }
public short getCompass() { return compass; }
public byte stall() { return stalls; }

5. The SonarPlayerDevice class

5.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not

been called.

public void readData();

Commands - PS (p. 26)

public void setSonarPower(byte state);

Accessible variables – PS (p.26)

public int range[];
public int samplesCount;

6. The LaserPlayerDevice class

6.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not

been called.

public void readData();

Commands - PS (p. 27-28)

public void configureLaser(short startAngle,

 short endAngle,
 short resolution,

 byte intensity);
public void getConfiguration();

If the configuration of the laser changed, the following method would return true,

otherwise – false;

public boolean isNewInfo ();

Methods – PS (p.27-28)

public int[] getRange();
public int[] getReflection();
public short getStartAngle();
public short getEndAngle();
public int getResolution();
public int getSamplesCount();
public short getIntensity();

7. The VisionPlayerDevice class

7.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not

been called.

public void readData();

Methods – PS (p.27-28)

public ColorChannel[] getColorChannels();
public ColorChannel getColorChannel(int i);

ColorChannel class variables:

public short index;
public short noBlobs;
public ColorBlob[] blob;

 ColorBlob class variables as in PS (p. 29):

 public int color;
 public int area;

public short x;
 public short y;
 public short left;
 public short right;
 public short top;
 public short bottom;

8. The PtzPlayerDevice class

8.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not

been called.

public void readData();

Commands – PS (p. 30)

public void setPTZ(short pan, short tilt, int zoom)

Methods – PS (p.30)

public short getPan();
public short getTilt();
public int getZoom();

9. The AudioPlayerDevice class

9.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not

been called.

public void readData();

Commands – PS (p. 31)

public void produceSound(short freq, short amp,

short duration);

Methods – PS (p.31)

public int[] getFiveHighestFrequencies();
public int[] getFiveHighestAmplitudes();

10. The BeaconPlayerDevice class

10.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not

been called.

public void readData();

Commands – PS (p. 33)

public void setConfiguration(byte bitCount,

 short bitWidth,
 short zeroThresh,

 short oneThresh);
public void getConfiguration();

If the configuration of the laser changed, the following method would return true,

otherwise – false;

public boolean isNewInfo ();

Methods – PS (p.33)

public int getBeaconCount();
public Beacon[] getBeacons();
public byte getBitCount();
public short getBitWidth();
public short getZeroThresh();
public short getOneThresh();

11. The BroadcastPlayerDevice class

11.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not

been called.

public void readData();

Commands – PS (p. 34-35)

public void sendMessage(String m);
public void receiveMessage();

Methods – PS (p.33)

public String getMessage();

To diversify between cases when the new message is received and the old

message still in the queue.

public void setRead();
public boolean isRead();

12. The SpeechPlayerDevice class

12.1 Methods

Methods – PS (p.36)

public void say(String str);

13. The GPSPlayerDevice class

13.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not

been called.

public void readData();

Methods – PS (p.37)

public int getX();

 public int getY();
 public int getHeading();

14. The VisionPlayerDevice class

14.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not

been called.

public void readData();

Commands – PS (p. 38-39)

The variables of the posInfo array are the first 6 variables in table PS-5.26
public void setBeacon(int id, int[] posInfo);

Methods – PS (p.38)

public int getPX();
public int getPY();
public int getPA();
public int getUX();
public int getUY();
public int getUA();

public int getReserved();

15. The TruthPlayerDevice class

Device available only in Stage (only in simulations and not on the real hardware).

15.1 Methods

Method allowing to read the data manually, if readAll() of PlayerClient has not

been called.

public void readData();

Commands

Teleports robot to a new location.

public void teleport(int x, int y);
public void teleport(int x, int y, int heading);

Methods – PS (p.38)

public boolean isTeleported();
public int getX();
public int getY();
public int getHeading();

	Devices

